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Abshact. The controversy regarding the o m e n c e  of self-organized criticality in the 
cellular automaton Game of Life has not yet been resolved, mainly due to its massive 
computational requirements. We consider a one-dimensional version of Life which shows 
essentially the same local complexity asits two-dimensional counterpart but allows a more 
extensive computational implementation. General cluster statistics, geometrical proper- 
ties and self-organized criticality are investigated. Implications concerning higher- 
dimensional Life are discussed. 

The concept of self-organized criticality (SOC) [l] has proven extremely fecund in the 
approach of non-equilibrium extended spatial systems and is finding applications in a 
wide variety of phenomena very little connected until recently, such as economics and 
astrophysics. The basic property of SOC is that power laws characterize the relaxation 
events for the system in the critical state. Furthermore, such a condition would result 
without fine tuning so that the SOC state would be the natural attractor to which the 
system is driven by the dynamics. 

A particularly interesting result has been the suggestion [2] that the Game of Life 
[3,4] would exhibit SOC. Life is a cellular automaton defined on a square lattice of Lz 
sites with possible values 0 or 1. In each time step the fate of each site is dependent on 
its eight nearest neighbours and parallel updatings according to the following rules: 
(i) a live site (1) will still be alive in the next generation if it has two or three live 
neighbours, otherwise it will die (l-+O); (i) a vacant site (0) will be occupied in the 
next generation (O+ 1, birth) if it has exactly three neighbours. This simple set of 
rules yields amazingly complex structures [3,4]. The occurrence of soc in Life is 
interesting because it is a non-conservative model and has an important biological 
motivation. However, other simulations have been performed [5] which seemed to 
indicate that Life would in fact not be a SOC model. The question has proven 
controversial [6] and is not yet resolved. A major difficulty in elucidating the problem 
resides in the highly demanding computational capacity required for the realization of 
extensive simulations in large lattices which require large stabilization times and in 
many cases the use of sophisticated machinery 161. With such points in mind we study 
here a qualitatively very similar version of Life defined in one dimension [7,8]. The 
low dimensionality makes possible implementations on large lattices and hence a 
more systematic and reliable statistical study of the game. 

The one-dimensional Life (to which we will refer as i c L )  is defined on a line of L 
sites with values as in the two-dimensional game (EL). The fate of a given site is 
defined by its four nearest neighbours, parallel updatings, and the following rules: 
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Figure 1. Asymptotic density p. as a function of initial density po, for 0.05<p040.95 in 
steps of 0.05 and a total of 100 experiments in each case. Points for L = lo4 (0). 10’ (0). 
and lo6 (m) are all superimposed. Two regimes are noticed region I (of dependence on 
initial occupancy) and region JJ (plateau). 

(i) a live site with either two or four live neighbours will survive in the next generation, 
otherwise it will die; (ii) a vacant site with either two or three live neighbours will be 
occupied (birth) in the next generation. With these rules the iGL shows all essential 
local behaviour of the ZGL, such as the existence of propagating and self-reproducing 
structures. Numerous examples of the rich faunaof the IGL are presented in [7]. Since 
the ZGL was introduced, virtually all efforts have concentrated on the understanding of 
its local properties. From this point of view the 1 o L  presents analogous behaviour and 
so may be considered as a valid construction but more easily implemented. Only 
recently global properties of Life have been investigated more extensively [2, 9-11]. 
Our goal here will be to study numerically the global properties of the iGL. All 
simulations were carried on Sun SPARC workstations and the rules of the game were 
implemented using the simple algorithm presented in IS]. 

A detailed description of the system is provided by the size distribution function 
n(s, t )  giving the number of clusters of size s at time t. A cluster is a set of live sites 
connected by a first-nearest-neighbour relation. In what follows we describe results 
from simulations of the IGL with open boundary conditions in lattices of the sizes up to 
L = lo6 from initial uncorrelated configurations at time t = 0. 

Two important quantities to be calculated are the first two moments of n(s, f), 
namely, the mass density p(t) =Z$n(s, t ) /L and the total number of clusters (cluster 
population) N(t)=X,n(s, t) .  As the rules are applied, the IGL evolves until a stable 
configuration is attained. Stable means that usual macroscopic variables (mass 
density, cluster population, average number of neighbours per site) reach a condition 
of stationary, oscillatory behaviour, or chaotic wandering around an average value. 
Of great interest to us are the properties of this asymptotic state. We show in figure 1 
the dependence of p. =p(t+-)  with fi=p(t=O). Two distinct regimes are readily 
observed for O=ZpoC0.30 (region I) the mass density in the stabilized regime grows 
rapidly whde for 0.306fi<1.00 (region II) p.. remains a constant (within statistical 
uncertainties) around 0.162. Such behaviour is quite similar to that found in the ZGL 
case [9]. An essential difference is found, however, for high initial occupancies where 
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Bigure 2. Typical &mpulational density p(f) as a fuucdon of time r for po in region I (lower 
CW) and regim n (upper c w e ) .  

& does not faU to zero. This may be understood 8 we recall that for the IGL a 
completely papulated universe is a stable state of the dynamics. From figure 1 it can be 
seen that p.. is independent of L. On the other hand N ,  =N(t-t  m )  scales with lattice 
size as N, - L1""o.m but has a similar functional dependence on The 
dynamical evolution of the density is shown in figure 2 for values of initial density from 
regions I and 11. In region II the mass density decays fallowing a power law given by 
p(r)-t-0.3*6.01 after aninitial transient and just before the asymptotic state is reached. 
The transient interval consists of about the first 10 time steps where the strong 
correlations with the initial configuration are destroyed. The same is verified for the 
cluster pop& tion where N(t)  - t-O.lplzo.@ . In region I the system is so spmely 
distributed that competition between clusters tums out to be an effect of minor 
importance. As a consequence no interesting time dependence for p or N is found. 

A nororious property of Life is its capacity to generate complexity. A particdarly 
useful measure of complexity suitable for lattice problems is the diversity of clusters 
originally introduced in fragmentation dynamics [12-14] and more recentry in Life 
[U]. The diversity A(t)=&O[n(s, t)] ,  with B(x) = 1 if x>O and 0 otherwise, gives the 
number of different clusters at time t.  The evolution of diversity is shown in figure 3. 
Over an iutervd approximately three times larger than that of power law dependence 
for p the diversity shows an exponential decay with A(C) -~~-~~~*~ . " ) '  in regjon a. 
We have found chat A, is independent of both L and po with an average value 
A, -3.2 & 0.7. This implies that a relatively small diversity is fouad in the stable state 
coming from a collection of small animals distributed over the line. In fact usually only 
objects of size no greater than about 5 populate the asymptotic states, From these 
facts it is possible to calculate directly the mass-size exponent D of the distribution of 
live sites jn the asymptotic state: The relation M,-LD,  with M, the total mass at 
t 4 m ,  defines the exponent D. Since M,=%sn(s,t ,)-~~n(s,r,)=N,-L'wetind 
D= 1. Alternatively, p- - LD-' and p -  is independent of L, implying that D= 1. The 
measurement of the radius of gyration R,= &&,- r#'*/M*, with ri the position of a 
live site 2,  can make these results more rigorous. From simulations we have deter- 
mined that Rg= L1'3.5 and M, -Rkw*aos and so the IGL distributes on a disconnected 
set of dimension I. 

as 
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Figure3. Evolution of diversity of cluster sizes for region I (lower m e )  and region U 
(upper curve). 

Another quantity that may shed light on how the system organizes over the 
possible states of cluster size is the ‘ W g ’  function @(t) = [sm(t) - A(f)]ls-(f), where 
s,,(f) is the biggest cluster size found at time t. The filling function expresses 
dynamically the evolution of lacunarity in size occupation. This is shown in figure 4 for 
a single experiment (a) and averaged over many cases (a). A tendency of linear 
growth with time is observed for the average (@(t)) on the same interval of 
exponential decay for the diversity. We have noticed that even when the system has 
evolved to a configuration where practically all macroscopic quantities are relatively 
stabilized near their asymptotic values, the filling function may present occasional 
‘bursts’ of apparently chaotic activity exhibiting behaviour reminiscent of intermit- 
tency. This is a result of the strong sensitivity of the filling function to localized 
interactions. 

To study the possibility of soc in the IGL case we follow the usual procedure of 
perturbing the stable configurations and determining the resulting distribution of 
relaxatim times and avalanche sizes. In our case the perturbation is the addition of a 
live site at a randomly chosen vacant site. As a result, the system is driven away from 
the stable state and will tend to reorganize io another stable configuration after T 
updatings (the stabilization time). Until a new stable state is achieved the perturbation 
affects the fate of its neighbours propagating its influence over a length 1 (the 
avalanche size). This quantity gives a measure of how correlated are the structures of 
the system: in the soc state, where presumably we have global connectivity, we should 
expect single perturbations ta cause events in all scales from very localized up to very 
large ‘catastrophic’ ones, according to a power law distribution characterized by a 
robust exponent. The same behaviour is expected for the distribution of stabilization 
times. In describing our results we need to consider two factors: lattice size and initial 
occupancy. In region I the added perturbation site almost always disappears in the 
first applications of the updating rules and the stabilization time is very small, 
independent of lattice size. Although for region 11 non-trivial effects can happen, 
these are far from what is expected for a soc state. Large-scale events spanning all the 
system are never present and in fact no avalanche length greater than 500 has been 
detected independent of lattice size, as long as L> l@. Also the average stabilization 

* 
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Fiigure4. (U )  Typical behaviour of the filling function (see text) 4(1) in a single experi- 
ment. (b)  Averaged filling function @(I))  over an ensemble of 50 equivalent experiments 
on a lattice of 101 sites. 

time (T) does not increase with lattice size as we should expect [SI. Only for L of the 
order of 10’ rare catastrophic avalanches are observed. In fignre 5 we show the 
distribution P(I)  of avalanche sizes and the average stabilization time as a function of 
L. Following each perturbation a value for 1 and Tis measured. After a large number 
of experiments are performed we can obtain the probability, expressed by P(l), that 
an avalanche of a given size will occur. The curve shown for P( l )  is typical for L>1@ 
and refers to lo5 experiments in a lattice with L= 10s. The exponentially decreasing 
hest fitting curve as well as the dependence of ( T )  on L are in conformity with that 
found for the ZGL case [5] indicating the absence of soc behaviour. The referred size- 
independent cutoffs in time and space verified over several decades in L practically 
rule out the possibility of soc in the 1GL case. 

In conclusion, we have studied a one-dimensional version of Life (IGL) with similar 
local properties as the two-dimensional game (ZGL). We have analysed the behaviour 
of the asymptotic ( t + m )  states as well as the evolution of mass density, cluster 
population, diversity, and cluster size occupation. An important motivation was to 
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L 
EgureS. Distribution P(1)  of avalanche sizes 1 triBered by single perturbations. The 
m e  refers to 10s experiments on a lattice of l@ avaialble sites but a similar behaviour is 
observed for L >  lb. The insert shows the average stabhtion time (T) following a 
perturbation as a function of L .  

consider the occurrence of self-organized criticality as suggested for ZGL. We have 
found that in one dimension Life does not seem to exhibit soc behaviour. Evidently 
we cannot infer from this that the ZGL is not a soc model as well. Nevertheless, it is 
worth recalling that, in many cases, one-dimensional models may be more complex 
than higher-dimensional ones [la. If this also happens in Life it is something that 
cannot be straightforwardly decided because generalizations of Life always hide a 
flavour of arbitrariness. However, if one believes (as our results seem to indicate) that 
the version considered here is valid so that it can reproduce generally the same 
complexity as the ZGL case, both locally and globally, then the evidence is that Life is 
not critical in the SOC sense, at least for d = l  and d=2. This fact by no means 
minimizes the importance of the automaton, which remains to be fully understood and 
constitutes a most notable source of complexity. Usual features of the game have also 
motivated higher-dimensional versions [16] that may bring further new possibilities. 
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